

Edexcel AS Physics: Materials – Calculation Practice

Praneel Physics

1. A metal rod has a length of 2.0 m and a cross-sectional area of 0.01 m^2 . If the rod is subjected to a tensile force of 1000 N, calculate the stress in the rod. (P)

Working and Answer:

$$\text{Stress} = \frac{\text{Force}}{\text{Area}} = \frac{1000\text{ N}}{0.01\text{ m}^2} = 100000\text{ Pa (100 kPa)}$$

2. A wire has a diameter of 2.0 mm and is stretched by a force of 200 N. Calculate the strain in the wire if it extends by 1.0 mm. (P)

Working and Answer:

$$\text{Area} = \frac{\pi d^2}{4} = \frac{\pi(0.002 \text{ m})^2}{4} = 3.14 \times 10^{-6} \text{ m}^2; \text{ Stress} = \frac{200 \text{ N}}{3.14 \times 10^{-6} \text{ m}^2} = 636619.77 \text{ Pa}; \text{ Strain} = \frac{\text{Extension}}{\text{Original Length}} = \frac{1.0 \text{ mm}}{1000 \text{ mm}} = 0.001$$

3. A spring has a spring constant of 300 N/m. If the spring is compressed by 0.05 m, calculate the force exerted by the spring. (P)

Working and Answer:

$$\text{Force} = k \cdot x = 300 \text{ N/m} \cdot 0.05 \text{ m} = 15 \text{ N}$$

4. A material has a Young's modulus of 200 GPa. If a tensile stress of 50 MPa is applied, calculate the strain produced in the material. (P)

Working and Answer:

$$\text{Strain} = \frac{\text{Stress}}{Y} = \frac{50 \times 10^6 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.00025$$

5. A steel cable with a length of 10 m and a diameter of 10 mm is subjected to a tensile force of 5000 N. Calculate the extension of the cable if the Young's modulus of steel is 200 GPa. (P)

Working and Answer:

$$\text{Area} = \frac{\pi(0.01 \text{ m})^2}{4} = 7.85 \times 10^{-5} \text{ m}^2; \text{ Stress} = \frac{5000 \text{ N}}{7.85 \times 10^{-5} \text{ m}^2} = 637,755,102.04 \text{ Pa}; \text{ Strain} = \frac{\text{Stress}}{Y} = \frac{637755102.04 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.00318877551; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.00318877551 \cdot 10 \text{ m} = 0.0319 \text{ m (31.9 mm)}$$

6. A beam of length 4.0 m and cross-sectional area 0.02 m^2 is subjected to a load of 8000 N. Calculate the stress in the beam. (PP)

Working and Answer:

$$\text{Stress} = \frac{\text{Force}}{\text{Area}} = \frac{8000 \text{ N}}{0.02 \text{ m}^2} = 400000 \text{ Pa (400 kPa)}$$

7. A rubber band is stretched from its original length of 0.5 m to 0.55 m. If the force applied is 10 N, calculate the strain in the rubber band. (PP)

Working and Answer:

$$\text{Strain} = \frac{\text{Extension}}{\text{Original Length}} = \frac{0.55 \text{ m} - 0.5 \text{ m}}{0.5 \text{ m}} = 0.1$$

8. A copper wire has a Young's modulus of 110 GPa. If a tensile stress of 70 MPa is applied, calculate the resulting strain. (PP)

Working and Answer:

$$\text{Strain} = \frac{\text{Stress}}{Y} = \frac{70 \times 10^6 \text{ Pa}}{110 \times 10^9 \text{ Pa}} = 0.00063636364$$

9. A cylindrical rod of length 1.0 m and diameter 0.01 m is subjected to a tensile force of 1000 N. Calculate the extension of the rod if the Young's modulus is 200 GPa. (PP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.01 \text{ m})^2}{4} = 7.85 \times 10^{-5} \text{ m}^2; \text{ Stress} = \frac{1000 \text{ N}}{7.85 \times 10^{-5} \text{ m}^2} = 127388.54 \text{ Pa}; \text{ Strain} = \frac{127388.54 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.000636942; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.000636942 \cdot 1.0 \text{ m} = 0.000636942 \text{ m (} 0.636942 \text{ mm)}$$

10. A material has a Young's modulus of 150 GPa. If a tensile stress of 30 MPa is applied, calculate the strain produced in the material. (PPP)

Working and Answer:

$$\text{Strain} = \frac{\text{Stress}}{Y} = \frac{30 \times 10^6 \text{ Pa}}{150 \times 10^9 \text{ Pa}} = 0.0002$$

11. A steel cable with a length of 20 m and a diameter of 12 mm is subjected to a tensile force of 8000 N. Calculate the extension of the cable if the Young's modulus of steel is 200 GPa. (PPP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.012 \text{ m})^2}{4} = 1.13 \times 10^{-4} \text{ m}^2; \text{ Stress} = \frac{8000 \text{ N}}{1.13 \times 10^{-4} \text{ m}^2} = 707,106.78 \text{ Pa}; \text{ Strain} = \frac{707106.78 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.0035355339; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.0035355339 \cdot 20 \text{ m} = 0.0707 \text{ m (70.7 mm)}$$

12. A beam of length 3.0 m and cross-sectional area 0.015 m^2 is subjected to a load of 6000 N. Calculate the stress in the beam. (PPP)

Working and Answer:

$$\text{Stress} = \frac{\text{Force}}{\text{Area}} = \frac{6000 \text{ N}}{0.015 \text{ m}^2} = 400000 \text{ Pa (400 kPa)}$$

13. A wire of length 2.0 m and diameter 1.0 mm is stretched by a force of 50 N. Calculate the extension of the wire if the Young's modulus is 200 GPa. (PPP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.001 \text{ m})^2}{4} = 7.85 \times 10^{-7} \text{ m}^2; \text{ Stress} = \frac{50 \text{ N}}{7.85 \times 10^{-7} \text{ m}^2} = 636619.77 \text{ Pa}; \text{ Strain} = \frac{636619.77 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.0000031831; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.0000031831 \cdot 2.0 \text{ m} = 0.0000063662 \text{ m (6.3662 mm)}$$

14. A material has a Young's modulus of 100 GPa. If a tensile stress of 20 MPa is applied, calculate the strain produced in the material. (PPP)

Working and Answer:

$$\text{Strain} = \frac{\text{Stress}}{Y} = \frac{20 \times 10^6 \text{ Pa}}{100 \times 10^9 \text{ Pa}} = 0.0002$$

15. A steel rod of length 5.0 m and diameter 0.02 m is subjected to a tensile force of 10000 N. Calculate the extension of the rod if the Young's modulus is 200 GPa. (PPPP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.02 \text{ m})^2}{4} = 3.14 \times 10^{-4} \text{ m}^2; \text{ Stress} = \frac{10000 \text{ N}}{3.14 \times 10^{-4} \text{ m}^2} = 318471.34 \text{ Pa}; \text{ Strain} = \frac{318471.34 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.00000159236; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.00000159236 \cdot 5.0 \text{ m} = 0.0000079618 \text{ m (7.9618 mm)}$$

16. A beam of length 2.5 m and cross-sectional area 0.01 m^2 is subjected to a load of 5000 N. Calculate the stress in the beam. (PPPP)

Working and Answer:

$$\text{Stress} = \frac{\text{Force}}{\text{Area}} = \frac{5000 \text{ N}}{0.01 \text{ m}^2} = 500000 \text{ Pa (500 kPa)}$$

17. A wire of length 1.5 m and diameter 0.5 mm is stretched by a force of 30 N. Calculate the extension of the wire if the Young's modulus is 200 GPa. (PPPP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.0005 \text{ m})^2}{4} = 1.96 \times 10^{-7} \text{ m}^2; \text{ Stress} = \frac{30 \text{ N}}{1.96 \times 10^{-7} \text{ m}^2} = 153,846,153.85 \text{ Pa}; \text{ Strain} = \frac{153846153.85 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.00076923077; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.00076923077 \cdot 1.5 \text{ m} = 0.00115384615 \text{ m (1.15384615 mm)}$$

18. A material has a Young's modulus of 250 GPa. If a tensile stress of 50 MPa is applied, calculate the strain produced in the material. (PPPPP)

Working and Answer:

$$\text{Strain} = \frac{\text{Stress}}{Y} = \frac{50 \times 10^6 \text{ Pa}}{250 \times 10^9 \text{ Pa}} = 0.0002$$

19. A steel rod of length 6.0 m and diameter 0.025 m is subjected to a tensile force of 15000 N. Calculate the extension of the rod if the Young's modulus is 200 GPa. (PPPPP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.025 \text{ m})^2}{4} = 4.91 \times 10^{-4} \text{ m}^2; \text{ Stress} = \frac{15000 \text{ N}}{4.91 \times 10^{-4} \text{ m}^2} = 3,055,555.56 \text{ Pa}; \text{ Strain} = \frac{3,055,555.56 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.00001527778; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.00001527778 \cdot 6.0 \text{ m} = 0.00009166667 \text{ m (0.09166667 mm)}$$

20. A beam of length 4.0 m and cross-sectional area 0.02 m^2 is subjected to a load of 10000 N. Calculate the stress in the beam. (PPPPP)

Working and Answer:

$$\text{Stress} = \frac{\text{Force}}{\text{Area}} = \frac{10000 \text{ N}}{0.02 \text{ m}^2} = 500000 \text{ Pa (500 kPa)}$$

21. A wire of length 3.0 m and diameter 1.5 mm is stretched by a force of 40 N. Calculate the extension of the wire if the Young's modulus is 200 GPa. (PPPPP)

Working and Answer:

$$\text{Area} = \frac{\pi(0.0015 \text{ m})^2}{4} = 1.77 \times 10^{-6} \text{ m}^2; \text{ Stress} = \frac{40 \text{ N}}{1.77 \times 10^{-6} \text{ m}^2} = 226,757,369.61 \text{ Pa}; \text{ Strain} = \frac{226757369.61 \text{ Pa}}{200 \times 10^9 \text{ Pa}} = 0.0011337868; \text{ Extension} = \text{Strain} \cdot \text{Original Length} = 0.0011337868 \cdot 3.0 \text{ m} = 0.00340136 \text{ m (3.40 mm)}$$